374 research outputs found

    A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data

    Get PDF
    Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction

    The Proneural Molecular Signature Is Enriched in Oligodendrogliomas and Predicts Improved Survival among Diffuse Gliomas

    Get PDF
    The Cancer Genome Atlas Project (TCGA) has produced an extensive collection of ‘-omic’ data on glioblastoma (GBM), resulting in several key insights on expression signatures. Despite the richness of TCGA GBM data, the absence of lower grade gliomas in this data set prevents analysis genes related to progression and the uncovering of predictive signatures. A complementary dataset exists in the form of the NCI Repository for Molecular Brain Neoplasia Data (Rembrandt), which contains molecular and clinical data for diffuse gliomas across the full spectrum of histologic class and grade. Here we present an investigation of the significance of the TCGA consortium's expression classification when applied to Rembrandt gliomas. We demonstrate that the proneural signature predicts improved clinical outcome among 176 Rembrandt gliomas that includes all histologies and grades, including GBMs (log rank test p = 1.16e-6), but also among 75 grade II and grade III samples (p = 2.65e-4). This gene expression signature was enriched in tumors with oligodendroglioma histology and also predicted improved survival in this tumor type (n = 43, p = 1.25e-4). Thus, expression signatures identified in the TCGA analysis of GBMs also have intrinsic prognostic value for lower grade oligodendrogliomas, and likely represent important differences in tumor biology with implications for treatment and therapy. Integrated DNA and RNA analysis of low-grade and high-grade proneural gliomas identified increased expression and gene amplification of several genes including GLIS3, TGFB2, TNC, AURKA, and VEGFA in proneural GBMs, with corresponding loss of DLL3 and HEY2. Pathway analysis highlights the importance of the Notch and Hedgehog pathways in the proneural subtype. This demonstrates that the expression signatures identified in the TCGA analysis of GBMs also have intrinsic prognostic value for low-grade oligodendrogliomas, and likely represent important differences in tumor biology with implications for treatment and therapy

    Voltage-gated potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel

    Voltage-gated potassium channels (Kv) in GtoPdb v.2021.3

    Get PDF
    The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel

    Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins

    Get PDF
    AbstractThe architecture of the pore-region of a voltage-gated K+ channel, Kv1.3, was probed using four high affinity scorpion toxins as molecular calipers. We established the structural relatedness of these toxins by solving the structures of kaliotoxin and margatoxin and comparing them with the published structure of charybdotoxin; a homology model of noxiustoxin was then developed. Complementary mutagenesis of Kv1.3 and these toxins, combined with electrostatic compliance and thermodynamic mutant cycle analyses, allowed us to identify multiple toxin-challel interactions. Our analyses reveals the existence of a shallow vestibule at the external entrance to the pore. This vestibule is ∼28−32A˚wide at its outer margin, ∼28−34A˚wide at its base, and ∼4−8A˚deep. The pore is 9–14A˚wide at its external entrance and tapers to a width of 4–5A˚at a depth of ∼5−7A˚from the vestibule. This structural information should directly aid in developing topological models of the pores of related ion channels and facilitate therapeutic drug design

    Establishing a core outcome set for peritoneal dialysis : report of the SONG-PD (standardized outcomes in nephrology-peritoneal dialysis) consensus workshop

    Get PDF
    Outcomes reported in randomized controlled trials in peritoneal dialysis (PD) are diverse, are measured inconsistently, and may not be important to patients, families, and clinicians. The Standardized Outcomes in Nephrology-Peritoneal Dialysis (SONG-PD) initiative aims to establish a core outcome set for trials in PD based on the shared priorities of all stakeholders. We convened an international SONG-PD stakeholder consensus workshop in May 2018 in Vancouver, Canada. Nineteen patients/caregivers and 51 health professionals attended. Participants discussed core outcome domains and implementation in trials in PD. Four themes relating to the formation of core outcome domains were identified: life participation as a main goal of PD, impact of fatigue, empowerment for preparation and planning, and separation of contributing factors from core factors. Considerations for implementation were identified: standardizing patient-reported outcomes, requiring a validated and feasible measure, simplicity of binary outcomes, responsiveness to interventions, and using positive terminology. All stakeholders supported inclusion of PD-related infection, cardiovascular disease, mortality, technique survival, and life participation as the core outcome domains for PD
    corecore